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Section 2:  Objectives 
 
The main purpose of this research project is to study new algorithms for Very Large-scale 
Stochastic Mixed-Integer Programming (VL-SMIP) problems.  These problems arise in a 
variety of defense applications, such as adaptive command and control (AC2) under 
uncertainty.  For instance, consider a situation in which assignments of pilots/aircrafts to 
targets may be contingent of sensor data revealed during the mission. In such situations, a 
preliminary set of assignments are made, recognizing that these will be revised once more 
reliable observations (regarding targets) are available. While such adaptive methods can 
enhance the effectiveness of C2, uncertainties can vastly enlarge the set of choices, and 
new algorithmic tools are necessary.  Another potential use of VL-SMIP arises in 
selecting base locations from which to respond so that damage to valuable assets can be 
minimized during simultaneous attacks on several assets.1    
 
The basic research that allows us to address VL-SMIP problems are as follows.  
 

 Thrust A:  Algorithms for Very Large-scale Stochastic Programming.  Our 
approach to stochastic programming is based on decomposition-coordination 
algorithms which work on smaller pieces of a VL-SMIP, and coordinate these 
pieces by using novel convexification methods based on disjunctive programming 
([A.1], [A.2]2).  For VL-SMIP, we have also designed specialized cut generation 
methods which are Stochastic Linear Programming (SLP) extensions of the 
traditional Cut Generation LP (CGLP) used for deterministic MIP problems.  In 
addition, to VL-SMIP, we have also devised methods that accelerate cut 
generation for SLP problems by using re-sampling (A.).  

 Thrust B: Algorithms for Deterministic MIP. Although the main focus of our 
research is on VL-SMIP, algorithms for the latter require advances for 
deterministic MIP algorithms which can be efficiently integrated with Stochastic 
Programming (SP), leading to algorithms for the VL-SMIP.  Indeed, one of the 
more important results of this project is the discovery of a pure cutting plane 
algorithm that can solve, in finite time, a general deterministic MIP.  Prior to our 
result, pure cutting plane algorithms were only available for binary MIP, and the 
question of finiteness had been open since the first MIP cutting planes due to 
Gomory in the 1960’s.  As expected, this discovery is being leveraged for the 
solution of VL-SMIP.  

 
In this report, we provide overviews of each of these thrusts, with further details available 
in the papers that have resulted from the grant. 

 

 

                                                 
1 Research that is of particular relevance to the Air Force is highlighted in this manner 
2 References to work in thrust A are referred to as [A.x], while those for thrust B are [B.x].  Citations other 
than those produced as a result of this project are listed as [C.x]. 
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Section 3:  Accomplishments / New Findings: Research 
Highlights and Relevance to the Air Force Mission 

 
This section presents the principal research accomplishments of this project. It is 
organized into four main sub-sections, each representing summaries of two important 
findings for each thrust area. These new nuggets of knowledge cover a wide array of 
discrete optimization research, ranging from new theory, algorithms, and computational 
experiments.  It should be noted that the success for VL-SMIP is predicated on advances 
in both MIP as well as SLP.  Consequently, we present the results in that order.  In each 
section we first describe the challenge, and then provide a synopsis of the research 
approach. 
 

3.1 Algorithms for Very Large-scale Stochastic Mixed-Integer Programming 
(Thrust A)  

 
Stochastic Mixed Integer Programs (SMIP) are recognized as one of the most formidable 
classes of mathematical programming problems. Not only are there significant challenges 
due to potentially large number of scenarios, but, SMIP with integers in the second stage 
give rise to a non-convex and discontinuous recourse function that may be difficult to 
optimize. [C.1] provides an illustration of how the presence of integer variables in the 
second stage leads to extremely complicated (non-convex and  discontinous) recourse 
functions.  Over the past few years, there have been significant advances in the design of 
algorithms for solving SMIP problems (see [C.8] and [A.5] for surveys). However, 
computational implementations, and results for large scale problems have been slow in 
coming. Thanks to this project, we are able to report on solution to SMIP problems with 
over a million binary variables in less than 3 hours of computing on a desk-top machine.   
 
VL-SMIP Challenge 
 
In order to maintain simplicity in this presentation, we assume that the second-stage 
problem satisfies the complete recourse property. Assuming that the random variable 
modeling uncertainty is discrete, with finite support Ω  ω , … , ωN , a two-stage SMIP 
may be stated as 
 

(3.1.1) Min  ∑ Ω  
(3.1.2) s.t.                                                    
(3.1.3)                                      Ω 
(3.1.4)    , Ω 0,  integer, ,  integer, . 

 
Despite the fact that there are several assumptions underlying problem (3.1.1)-(3.1.4), it 
is somewhat general from the IP point of view since both the first and second stage 
variables allow general mixed-integer problems. 
 
Suppose now that we wish to apply a resource directive decomposition method (i.e. 
Benders' decomposition). At iteration k of such a method, we solve one second-stage 
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subproblem for each outcome , and assuming that there is an appropriate solution 
method for the second-stage, then we can obtain a non-decreasing price function ;·  
for each outcome Ω [C.3]. Consequently, one obtains an inequality of the form 
 

(3.1.5)  ∑ ; .Ω   
 

Hence, as iterations proceed, one obtains a sequence of relaxed master programs of the 
following form. 
 

(3.1.6) Min   
(3.1.7) s.t.                 
(3.1.8)      0,    1  
(3.1.9)        0,  integer, . 

 
Because the approximation in (3.1.5)  (and consequently (3.1.8)) is non-convex, the 
master problem in (3.1.6)-(3.1.9) is a non-convex mixed-integer program, and as 
indicated in [C.1], this approach is not scalable without further assumptions.  
 
Synopsis of the Research 
 
Our research is motivated by the observation that stochastic programming problems have 
a special (decomposable) structure, and in order to solve them in an efficient way, one 
needs to take advantage of their special structure. Our approaches use disjunctive 
programming ideas to approximate the feasible region by a convex set, and similarly, the 
expected recourse function is also approximated using disjunctive programming in a 
decomposable manner. Before summarizing the benefits of such an approach, we 
describe one of the concepts that is central to our research: disjunctive decomposition 
with a branch-and-cut framework for expected recourse approximations, referred to as 
D2-BAC.  Because D2-BAC uses a Branch-and-Bound  (B&B) search in the second-
stage, it allows an “approximate solve” of the second-stage problem by truncating the 
number of nodes explored in the B&B search tree. Moreover, note that a B&B search tree 
that is obtained for one scenario ( ) can be used to approximate the second-stage MILP 
associated with another scenario.  
 
Let  denote the set of nodes of the B&B tree that have been explored for the 
subproblem associated with scenario  . For any node  , let ℓ  and  
denote vectors whose elements are used to define lower and upper bounds, respectively, 
on the second-stage (integer) variables. In some cases, an element of   may be 

 ∞, and in this case, the associated constraint may be ignored, implying that the 
corresponding dual multiplier is fixed at 0. 
 
In any event, suppose that for a given , we wish to construct a lower bounding 
approximation of the value function of the second-stage problem. The LP relaxation for 
node  may be written as 
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(3.1.10) ;  min     
(3.1.11)                                     
(3.1.12)                         ℓ ,      

 
The above LP can be used to derive a lower bounding function for node , that is, we 
obtain an inequality of the form 

;   
Let  denote the epigraph of the above affine approximation. Since the optimal 
value of the second-stage problem for a particular outcome  is at least as large as the 
minimal lower bound, we obtain a lower bound on the subproblem value function for an 
outcome  by defining a function 
 

(3.1.13) ;  Minq  Q ω  . 
 
Since right hand side  in (3.1.13) is a non-convex function, using it directly in the first 
stage would result in a Benders' master program which is non-convex, leading to a 
problem that is not any easier than (3.1.5).  Nevertheless we can convexify (3.1.13), thus 
leading to a more manageable master program. This is done by using disjunctive 
programming to derive a facet of the set 

:   clconv . 
For each Ω, a facet of clconv  provides an affine lower bounding 
approximation of (3.1.13). Taking expectations then yields an affine approximation 
which replaces (3.1.8) in the master program, and now, the objective function of the 
master program is restored to being a piecewise linear and convex function, leading to a 
much more tractable approximation. 
 
Table 1 summarizes computational results that have appeared in [A.9].  These instances 
are stochastic server location problems (SSLP) in which servers have to be located to 
meet demand which may or may not be realized in the future [C.6].  If demand is 
realized, then servers have to be allocated in such a way that capacity restrictions are 
satisfied and certain operating rules (e.g. servers can be only a specified distance from 
demand) must be satisfied, while meeting as much demand as possible. As shown in 
[A.4] SSLP problems which are essentially unsolvable without decomposition. (Here 
unsolvable refers to the inability to obtain an optimal solution within 10,000 seconds of 
computing on a Sun Fire 400 workstation.) However, Table 1 demonstrated that these 
are being solved to optimality using various versions of Disjunctive Decomposition (D2).  
The earliest version, referred to as D2 in Table 1, uses only set convexification, whereas 
the D2-BAC algorithm uses both value function and set convexification [C.11].  The first 
two columns represent ideas that were implemented in [A.4], and the column labeled D2-
BAC+SLP refers to a new cut generation process which uses stochastic linear 
programming, and a corresponding specialized SLP decomposition to solve the cut 
formation LP in [A.9]. The improvements are clearly remarkable, considering that most 
of these instances are unsolvable using state-of-the-art deterministic MILP solvers [A.4]. 
 
The instances in Table 1 were first reported in [C.6], and subsequently used as a test-bed 
for evaluating advances for this genre of decomposition algorithms. Except for the first 
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two instances listed in the following table, we were unable to obtain optimal solutions 
using state-of-the-art commercial software.  To appreciate the significance of some of the 
instances, note that if one were to use a deterministic equivalent formulation of the 
instance denoted by 10.50.2000, then the resulting problem would have at least one 
million binary variables (10 50 2000). In the decomposition framework however, the 
number of first-stage variables is 10 and the number of second-stage variables is 500 (per 
scenario). Because of decomposition, the 2000 sub-problems are solved independently, 
and as a result we are able to solve the high dimensional deterministic equivalent by 
solving a collection of lower dimensional problems. This is why decomposition is a 
winning strategy. 
 

Table 1: Performance of Various Decomposition Algorithms for VL-SMIP 
 

 
As a result of such speed-ups, a collaborative DARPA project between AT&T and 
Telecordia is planning to implement these tools for a new generation of design tools for 
communications networks. 
 

3.2 Convexification of Mixed-Integer Programming Problems (Thrust B) 
 
SMIP algorithms presented in section 3.1 rely heavily on convexification of MIP 
problems.  Algorithms for both master and subproblems depend on this operation.   
Disjunctive and lift-and-project cuts [C.2, C.3], semidefinite relaxations and 
reformulation-linearization technique (RLT) [C.12] have provided alternative approaches 
to generate cutting planes that define the convex hull of feasible points of a binary MILP.  
The case for MILP with general integers  has not been as well understood, even when the 
integer variables are bounded. While pure integer programming can be shown to have 
finite representation using Gomory cuts, the same is not true for general MILP [C.5], and 
prior to the current project, this result was not available for disjunctive programming 
methods. 
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MIP Challenge 
 
While disjunctive cuts are natural to use for general MIP problems, a cutting plane 
procedure using disjunctive cuts has not been proved to be finitely convergent. Indeed, 
the facial disjunctive property [C.2] was deemed critical for finite convergence and this 
property holds for binary MIP, but not for general MIP.  Unfortunately,  as shown in 
Figure 2 of [C.10], the absence of the facial disjunctive property could lead to infinitely 
many iterations.  Subsequently, [C.7]  provided the proof that in the absence of the facial 
disjunctive property, a one-variable-at-a-time method for convexifying disjunctive sets 
leads to an infinite convergent process that ultimately does provide the convex hull of 
feasible points. Of course, one could write a binary expansion of each general integer 
variable and the resulting formulation is a mixed 0-1 program which can be sequentially 
convexified.  However, this is well known to be very inefficient because of a large 
number of variables, and the loss of any structure of the model.  
 
We address the following questions: 

 Is it possible to use the disjunctive programming methodology to describe the 
convex hull of  MILP solutions in finitely many steps without introducing binary 
variables? 

 Is there a constructive methodology to obtain an optimal solution to a general 
MIP using a disjunctive programming characterization of its convex hull?  

 If we are restricted to introduce only one cutting plane in any iteration, is there a 
finitely convergent disjunctive programming algorithm that solves a general MIP? 

 
Synopsis of the Research 
 
In this synopsis, we restrict our presentation to only the last bullet mentioned above.  This 
is in fact the answer to a question that has been open for decades [C.5].  For details 
regarding the other bullets, see [B.1] where the concept of cutting plane tree algorithm 
was introduced. 
 
In the cutting plane tree , there is a single root node o. For each node , an integer 

 keeps track of the cutting planes that will be used to generate a disjunctive cut when 
this node is revisited, an integer 1, 2, … ,  stores the index of the integer variable 
that is split, an integer  stores the (lower) level of the splitting. Let ,  and  denote 
links to the left child, right child  and parent nodes  of node , respectively. Let  be 
all nodes on the sub-tree rooted at node  (not including node  and the leaf nodes). 
Let  be the collection of the nodes on the path from the root node to node  (not 
including the root node), let  be the collection of  nodes in  that were formed 
as the left child node of its parent, and let   be the collection of  nodes in   
that were formed as the right child node of its parent. Given   define 

  |  0, ,
 

,  ,    1,   . 
We let  store an iteration index, which gives the set  to be used in the cut 
generation LP (CGLP) (Balas 1979, Sherali and Shetty 80). The set  corresponds to 
the intersection of the linear relaxation ( ) together with the first 1 cuts.  If 
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    , we say that the left (right) child node of  is 
“fathomed'”, i.e.,     (   ). Let  denote the collection of all leaf 
nodes of the cutting plane tree at the end of iteration k. Then, the set of mixed-integer 
feasible points belong to the union of  for .  
 
At iteration k, if the current extreme point solution to min  , given by  is 
integral, then we have found the optimal solution to the MIP. Otherwise, we search the 
cutting plane tree, to find the last node  on the path from the root node such that 

  .  There are two cases: Case (1)   is a leaf node  ), Case (2)  is not a 
leaf node    _ , ,  and ). In Case (1), we choose a 
fractional variable , 1, … ,  with the smallest index, and let the split variable be 

. We create two new nodes: left ( ) and right ( ) children of  at the split level 
 . We let  |  and  |  . In this 

case, we also let , as this is the first time the tree search for a fractional solution 
stops at node .  In Case (2), the cutting plane tree and  are unchanged.  However, in 
this case, we update  for all successors of , . We generate a valid 
inequality for the set clconv   that cuts off  (using an extreme 
point of the Cut Generation LP). The new inequality is included along with those 
defining  , and the resulting set is denoted .  This process continues until one of 
the stopping criteria is satisfied. 
 
Theorem: Assume that the set of feasible solutions of an MIP is non-empty and has 
bounded integer variables.  Then the cutting plane tree algorithm converges to the 
optimal solution in finitely many iterations.  (See Chen, Kucukyavuz and Sen 2009). 
 
The above result settles a question that has been open since the inception of mixed-
integer programming fifty years ago! 
 

3.3 Computational Implications of the Cutting Plane Tree Algorithm (Thrust B) 
 
As with deterministic MIP problems, cutting plane schemes are indispensable for 
stochastic MIP problems.  Section 3.1 clearly demonstrates the power of combining 
cutting planes with decomposition.  However, some major challenges remain before we 
can extend these ideas to general stochastic mixed-integer programs. 
 
The Challenge 
 
The CPT represents an adaptive sequence of disjunctions involving multiple variables, 
and is able to discover the convex hull (closure) of any instance of a bounded mixed-
integer programs with general integer variables (MIP-G), without having to specify an a 
priori hierarchy. This characterization is a generalization of the sequential 
convexification process of [C.2] for MIP with binary variables (MIP-B).  However, it is 
important to note that the same sequential process of convexification (one variable at a 
time) does not yield the convex hull of MILP-G in finitely many steps [C.7].  Prior to this  
[C.10] presented examples of non-convergence in which facet inequalities of two-term 
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(simple) disjunctions are derived to cut away the solution to the most recent LP 
relaxation. The convexification result presented in [B.1] (Section 3.2) certainly indicates 
that there may be hope in that direction, but is this realizable in a computationally viable 
algorithm?  The challenge is to solve a battery of test problems using only simply cutting 
plane methods.  Such a test, reported in [B.2]  avoids the effects of other tools commonly 
used in MIP solvers, thus giving a better indicator of their strength.   
 
Computational Experiments with CPT 
 
In order to isolate and identify the potential of our scheme of generating multi-term 
disjunctions, we do not include other computational devices such as branch-and-bound, 
other classes of cutting planes, heuristics or preprocessing strategies. Thus, the CPT 
algorithm was tested as a pure cutting plane method.  Moreover, two different types of 
cut generation LPs  (CGLP) were devised: one was the weighted cut coefficients  (WCC) 
formulation commonly used in lift-and-project implementations of the disjunctive cut 
principle, and the other is a new normalization scheme based on minimizing the 1-norm 
of the cut coefficients (M1NC).  The instances used for this study were selected from the 
MIPLIB 2.0, 3.0 and 2003 libraries3 that have total number of variables less than or equal 
to one thousand and rows less than or equal to one thousand.  The computer code was 
implemented in C in Microsoft Visual Studio 2003.  We conducted our experiments on 
Windows XP platform with Intel Q9450 Core 2 Quad processor, with 4 cores, 4 threads, 
running at 2.66 GHz speed with 4 GB of RAM.  The linear programming solver is IBM 
ILOG CPLEX 12.2.  
 
The computational results for each variant is shown in Tables 2 and 3 in the following 
pages.  Table 2 reports the performance for Binary Mixed-Integer Programs, whereas, 
Table 3 reports the same for General Mixed-Integer Programs.  The measure of 
performance that we are interested in is the gap closure (Gapcl) in these tables.  While 
some of the harder problems show no gap closure (which is consistent with the other 
cutting plane schemes in the literature), the degree of gap closure obtained after an hour 
of computing exceeds 50% on average, in both tables.  This is indeed remarkable because 
we have not used any branching, or multiple specialized cutting planes, as is commonly 
done by commercial software.   
 

                                                 
3 The test instances are available at  http://miplib.zib.de 
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Table 2:  Performance of CPT on Standard Binary MIP Test Problems 

Table 3:  Performance of CPT on Standard General MIP Test Problems 

  WCC     M1NC     
Instance  Time(s)  Cuts  T  N  Gapcl  Time(s) Cuts  T  N  Gapcl  

bell3a  >3600  74  5  9  70.74% >3600  1320  9  17  74.62%  
bell5  >3600†  503  2  4  94.28% >3600  1089  4  6  97.19%  

blend2  >3600†  440  3  5  64.95% >3600  2551  2  3  41.46%  
flugpl  >3600  1342  3  5  23.65% >3600  8991  4  8  27.08%  
gen  >3600†  698  3  6  91.94% >3600  1881  2  3  96.08%  
gt2  >3600  663  3  5  97.06% >3600  1958  14  27  93.24%  

noswot  >3600  315  7  13 0.00%  >3600  904  5  9  0.00%  
rout  >3600  732  2  3  3.13%  >3600  2030  2  3  6.95%  

timtab1  >3600  1132  2  3  37.50% >3600  3018  3  5  44.02%  
timtab2  >3600  1170  2  3  29.40% >3600  2818  2  3  33.92%  
Average   706  3.2 5.6 51.27%  2656. 4.7  8.4  51.46%  

 WCC  M1NC  
Instance  Time(s)  Cuts  T  N  Gapcl  Time(s) Cuts  T  N  Gapcl  
aflow30a  >3600  794  2  3  42.88% >3600  1456  2  3  70.85%  
danoint  >3600  398  2  3  2.64%  >3600  500  5  9  1.74%  
dcmulti  >3600  975  2  3  99.51% >3600  1390  4  8  100.00%  
egout  6.6  173  2  3  100.00% 2.1  120  3  5  100.00%  

enigma  >3600  1524  4  7  nogap  >3600  3324  9  18  nogap  
fixnet6  >3600†  675  2  3  69.13% >3600  1132  4  7  90.86%  
glass4  21.8*  192  2  3  75.00% >3600  12  4  7  25.00%  
lseu  >3600  2068  2  3  47.61% >3600  2983  3  5  56.94%  

markshare1  >3600  399  11 21 0.00%  >3600  2358  25  49  0.00%  
markshare2  >3600  185  8  15 0.00%  >3600  2475  20  39  0.00%  

mas74  >3600  14  2  3  11.01% >3600  0  1  1  0.00%  
mas76  >3600  4  3  5  7.05%  >3600  0  1  1  0.00%  
misc03  >3600  1862  3  5  55.95% >3600  8755  2  3  57.26%  
misc07  >3600  1412  3  5  12.03% >3600  4859  4  7  12.06%  
mod008  >3600  1413  3  5  24.95% >3600  1710  2  3  31.62%  
modglob  >3600  619  2  3  85.67% >3600† 479  2  4  99.93%  
opt1217  >3600  920  2  3  0.60%  >3600  1087  11  21  0.53%  
p0033  >3600  280  3  5  72.92% >3600  5203  6  11  99.35%  
p0201  >3600  974  2  3  94.74% >3600  2463  2  3  76.57%  
p0282  >3600  1753  2  3  97.08% >3600  2664  2  3  98.31%  
p0548  >3600  1038  2  3  46.79% >3600  1305  2  3  100.00%  

pk1  >3600  969  7  13 0.00%  >3600  3373  6  11  0.00%  
pp08a  >3600†  1169  2  3  98.13% >3600  2355  2  3  99.50%  

pp08aCUTS  >3600  519  2  3  89.33% >3600  2178  2  3  98.88%  
qiu  >3600  144  1  1  55.97% >3600  876  2  3  81.38%  
rgn  >3600  1144  3  5  46.48% >3600  435  5  9  53.65%  

set1ch  >3600†  1840  2  4  99.95% 2896.7 1675  5  14  100.00%  
stein15  >3600  3914  2  3  24.19% >3600  4406  2  3  38.50%  
stein27  >3600  4010  2  3  12.93% >3600  4344  2  3  24.63%  
stein45  >3600  3051  2  3  0.000% >3600  3507  2  3  0.000%  
vpm1  >3600  1485  2  3  84.88% 206.6  1304  2  3  100.000%  
vpm2  >3600  1445  2  3  79.48% >3600  1723  2  3  88.14%  

Average   1182.  2.8 4.7 49.58%  2201. 4.6  8.4  55.02%  
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3.4  Extensions of Stochastic Decomposition (Thrust A) 
 

The Challenges 
 
Stochastic Decomposition is a sequential sampling algorithm which was designed to 
solve two-stage stochastic linear programming (SLP) problems.  As far back as 1992, SD 
provided near-optimal solutions on very large SLP problems like SSN on work-station 
class computers of the time [C.9]. Nevertheless, it still had some limitations: a) it is 
unable to solve SMIP instances in which the second-stage has integer variables, and b) 
even with SLP problems, its optimality cuts require all previously observed outcomes, 
making cut generation more computationally intensive than may be necessary.   The first 
limitation was overcome in the dissertation research of [A.9], funded as part of this 
project.  This work not only allows us to handle SMIP instances within SD, but also 
allows the SMIP instance to take advantage of the sampling capability of SD, thus 
allowing the solution of instances with continuous distributions, and achieving 
convergence with probability one. The second challenge was addressed in [A.6] by 
introducing the notion of re-sampling during the cut generation process.   
 
Synopsis of the Research 
 
It turns out that the idea of re-sampling is important for SLP, but becomes much more 
critical for VL-SMIP.  However, the specific goals and strategies for each class of 
problems differ in their details because the cut generation for SLP captures value (or 
expected recourse) function approximations, whereas, the cut generation in VL-SMIP 
refers to the convexification procedure using D2. of the integer feasible points. Because 
the setup for SLP is more intuitive, we will discuss that first.   
 
The cut generation process in SD requires that we approximate a subgradient for each 
outcome of the value function of the second stage LP.  The re-sampling process 
simplifies this step by only choosing a fraction of the outcomes that have been generated 
until iteration k. One relatively straightforward way to include re-sampling within the cut 
generation process is to accept/reject an outcome within a sample, based on a Bernoulli 
random variable. Thus, if p is the acceptance (success) probability, then we generate a 
uniform random variate for each previously generated outcome, and use only those 
outcomes ,    for which the random number is less than p.  Clearly, as p 
increases, SD cuts tend to use more outcomes in the approximation.   In the 
computational implementation of this process, we re-sample only after a certain 
minimum number of iterations have been completed because the re-sampling process can 
only benefit when the number of outcomes used for cut-generation is large.   
 
We demonstrate the effectiveness of re-sampling by solving an instance referred to as 
20Term  which arose in Freight Scheduling (Infanger-1999).  For this instance, we fix the 
maximum number of iterations at 800 for both versions of Regularized SD (with and 
without re-sampling) and perform 20 replicated runs. In the re-sampled version, we start 
the re-sampling process after 300 iterations and choose the acceptance probability p as 
0.7. Finally, the LP solver in our computation uses the ILOG CPLEX callable library, 
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version 10.0, and all programs were compiled and run in a Unix environment running on 
a Sun workstation (Sun Fire V440).  
 
Figure 1 reports the solution times for the two versions we are comparing. We record the 
CPU time (in seconds) every 100 iterations. As illustrated in Figure 1, there is no 
difference between the two versions for the first 300 iterations because re-sampling was 
started only after 300 iterations. However, after 300 iterations, the re-sampled version is 
faster as iterations proceed. Moreover, at iteration 800, the re-sampled version takes 
62 seconds compared to 84.5 seconds for Regularized SD.  Thus the re-sampled version 
results in a reduction of  26.7 % in computational time. 
 
Figure 2 demonstrates the solution quality obtained by the two versions.  As expected, 
there is no difference between the two versions SD for the first 300 iterations. At 
iterations 400, there is a jump in objective function value due to re-sampling.  These 
values were obtained by running an out-of-sample evaluator that samples the objective 
function, given a first stage solution used in a particular iteration.  It is interesting to 
observe that although the objective values obtained by the re-sampled version are not as 
good in the early iterations of re-sampling, the two versions begin to converge to the 
same value as iterations proceed.  As a matter of fact, at iteration 800, one observes 
scant differences in objective function value between the two versions, with the original 
Regularized SD version yielding 254561.8310 and the sampled version providing a 
slightly higher value at 254572.1976. 
 

 
Figure 1:  Example savings in computational time using re-sampling 
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Figure 2:  Example of negligible loss in optimality due to re-sampling 

 
As for using SD for SMIP problems, asymptotic convergence was proved by Yuan 
(2010) for the modification in which D2 cuts are added in each iteration to all of the 
subproblems.  While the inclusion of all outcomes in the optimality cut provides a 
stronger cut, this also increases the time it takes to generate such a cut.  Instead, we use 
only a subset of the outcomes for optimality cut generation.   This approach speeds up the 
computations as shown in Figure 3, where the largest instance of Table 1 was solved to 
optimality in 400 SD iterations, although our experiments ran the method to 1000 
iterations, with no changes observed.  The solution shown in Figure 3 are the same ones 
that were obtained using D2-BAC+SLP. 
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Figure 3:  Optimal solution for SSLP instance 10 50 2000 using SD for VL-SMIP 

    

Section 5: Publications 
 

All papers listed below can be obtained by sending e-mail to the PI at 
sen.22@osu.edu.  For those papers that are not covered in the synopses in the body, 
summaries of how they are relevant to the project, and  important to the Air Force are 
provided below. 

 
 
Thrust  A: Algorithms for Very Large Scale Stochastic Programming 
 
[A.1] T. Genc and S. Sen 2008, “An analysis of capacity and price trajectories for the 
Ontario Electricity Market using dynamic Nash Equilibrium under uncertainty,” 
Energy Economics, 30, pp. 173-19. 
 

Dynamic Nash games arise in a variety of applications for the Air Force.  The 
methodology of this paper allows us to handle games in which the future is 
uncertain.  This particular paper shows the applicability of the methodology of 
this project with large scale data from the electricity generation sector. 

 
[A.2] J.L. Higle, B. Rayco, and S. Sen 2009, “Stochastic Scenario Decomposition for 
Multi-stage Stochastic Programs,”  IMA Journal of Management Mathematics, pp 1-
28. 
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This paper reports on a multi-stage approach to stochastic decomposition by using 
a dual version of the multi-stage stochastic programming problem.  We show how  
the search can be made more efficient by using aggregation-disaggregation 
principles.  This type of  algorithm is useful when the control actions must evolve 
with observed data over multiple decision epochs.  This  paper is very central to  
the goals of this project, and the needs of adaptive  command and control  under 
uncertainty.  

 
[A.3] K. Huang, S. Sen, and F. Szidarovszky, “Connections among Decision Field 
Theory models of cognition,” submitted to Journal of Mathematical Psychology. 
 

Psychologists have described human decision-making through a class of models 
that are classified as Decision Field Theory (DFT).  Through experimental 
investigations, these mathematical models have been identified as being  
important for understanding pilot decision-making, especially for time-critical 
decisions.  Such models are clearly of value to the Air Force. Our research  has 
provided a unfied  theory for a variety of  DFT models.   

 
[A.4] L. Ntaimo and S. Sen 2008, “A Comparative Study of Decomposition 
Algorithms for Stochastic Combinatorial Optimization,” Computational Optimization 
and Applications, vol. 40, pp. 299-319. 
 

Discussed in the synopsis 
 
[A.5] S. Sen 2010, “Stochastic Integer Programming Algorithms: Beyond Benders' 
Decomposition,” accepted for publication in Wiley Encyclopedia on Operations 
Research and Management Science. 
 

Discussed in the synopsis 
 
 

[A.6] S. Sen, Z. Zhou and K. Huang  2009, “Enhancements of Two-Stage Stochastic 
Decomposition, Computers and Operations Research,  pp. 2434 – 2439. An updated 
version entitled “Stochastic Decomposition and Extensions,” is to appear in 
“Stochastic Programming: The State of the Art,” in honor of George Dantzig, edited 
by G. Infanger. 
 

Discussed in the synopsis 
 

 

 [A.7] S. Sen and Z. Zhou, “Multi-stage Stochastic Decomposition” submitted to 
SIAM  Journal on Optimization (currently under revision). 
 

This type of  algorithm is useful when the control actions must evolve with 
observed data over multiple decision epochs.  Clearly this paper is completely in 
line with the goals of this project, and the needs of the Air Force. 
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[A.8] Y. Yuan  2010, “Algorithmic Advances in Stochastic Combinatorial 
Optimization and Applications, Ph.D. dissertation, ISE Department  Ohio State 
University, Columbus, OH. 
 

Discussed in the synopsis 
 

[A.9] Y. Yuan and S. Sen 2009, “Enhanced cut generation methods for 
decomposition-based branch-and-cut algorithms for two-stage stochastic mixed-
integer programs,” INFORMS Journal on Computing, pp. 480 – 487. 
 

Discussed in the synopsis 
 

 
Thrust  B: Algorithms for Deterministic Mixed-Integer Programming 
 
[B.1] B. Chen, S. Küçükyavuz, S. Sen, “Finite Disjunctive Programming 
Characterizations for General Mixed-Integer Linear Programs,” accepted in 
Operations Research. 
 
 

Discussed in the synopsis 
 
 
[B.2] B. Chen, S. Küçükyavuz, S. Sen, “A Computational Study of the Cutting Plane 
Tree Algorithm for General Mixed-Integer Linear Programs,” submitted to 
Operations Research Letters. 
 
  

Discussed in the synopsis 
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